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Abstract—Demand forecasting in power sector has become an
important part of modern demand management and response
systems with the rise of smart metering enabled grids. Long
Short-Term Memory (LSTM) shows promising results in pre-
dicting time series data which can also be applied to power
load demand in smart grids. In this paper, an LSTM based
model using neural network architecture is proposed to forecast
power demand. The model is trained with hourly energy and
power usage data of four years from a smart grid. After training
and prediction, the accuracy of the model is compared against
the traditional statistical time series analysis algorithms, such
as Auto-Regressive (AR), to determine the efficiency. The mean
absolute percentile error is found to be 1.22 in the proposed
LSTM model, which is the lowest among the other models. From
the findings, it is clear that the inclusion of neural network
in predicting power demand reduces the error of prediction
significantly. Thus, application of LSTM can enable more efficient
demand response system.

Index Terms—Smart Grid, Long Short-Term Memory
(LSTM), Time series analysis, Recurrent Neural Network (RNN),
AutoRegressive (AR)

I. INTRODUCTION

With the advancement of Internet of Things (IOT), the smart
grids have gained the ability of real time metering termed as
smart metering. This intelligent metering technology greatly
benefits power demand forecasting because of its requirement
of constant information flow between the smart grid and the
consumer. The availability of past energy usage data makes it
possible to test new approaches and search for optimizations
in the existing forecasting models [1].

Power companies and power consumers both need power
demand forecasting for an uninterrupted workflow. Forecasting
provides some benefits such as real time pricing and irreg-
ularity detection. It has different application for individual
data vs aggregated data [2]. All consumer load data, in a
particular area, is combined in order to get the aggregated
forecasting result. This forecasting is used by the power
company to predict the overall power demand trend and take
necessary steps beforehand so that no load shedding occurs.
On the contrary the individual data assists in other ways such
as abnormal meter measurements or unexpected failure in
meter technology. Also it can assist in detecting deliberate
manipulation in power utilities. The forecasting is such an

important part in power industry as it emphasises on the proper
resource management and optimization thus making the smart
grid more efficient and self sustaining [3].

Time-series modeling is a very popular statistical model.
On one hand there are some traditional statistics based models
for time series analysis such as ARMA [4] [5], ARIMA [6]
[7]. Hong et al. endorsed multiple linear regression for the
modeling of hourly energy demand using seasonality [8]. In
2019, D. Rolnick et al. presented that energy forecasting is
recognized as one of the most significant contribution areas
of Machine Learning(ML) toward transitioning to a electrical
infrastructure [9]. Existing investigation into the effectiveness
of neural network based models such as Artificial Neural Net-
works provide good accuracy in demand forecasting compared
to traditional models [10]. Over a long forecasting horizon,
LSTM-based RNN models can accurately anticipate compli-
cated nonlinear, non-stationary, and nonseasonal uni-variate
electric load time series. Deep Neural Networks (DNNs) and
traditional RNNs can not learn temporal sequences or long-
term dependencies as well as LSTM-RNN architectures can
[11]. In addition, Cheng et al. presented that PowerLSTM,
which is the first power demand forecasting model based on
LSTM, incorporates time series features, weather features, and
calendar features [12]. It can outperform some models adopted
in recent research works such as, Support Vector Regression
(SVR) and Gradient Boosting Tree (GBT).

So, it is evident from existing research that application of
RNN models such as LSTM may provide much better results
with higher accuracy and consistency than statistical models.
In this paper, an LSTM model is proposed to predict the power
demand of smart grids and to calculate the error rate. The
results prove to be promising as the model greatly outperforms
traditional statistical models.

The paper has been organized in four sections. In Section
I, an overview of this research work has been presented with
relevant literature review. In Section II, the proposed system
model for forecasting power demand is discussed. In Section
III, the performance of the proposed model has been analyzed
and compared against different models such as Autoregressive.
Finally, the paper was concluded with Section IV.
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II. SYSTEM MODEL

The demand prediction model used in this paper is based on
LSTM where the parameters were tuned for higher accuracy.
In order to get accurate predictions from the model, an
extensive amount of smart grid power usage data is necessary.
So, smart grid power usage data from a smart grid in Spain is
used. Then this data is divided into two sections: the training
data set and the validation dataset. For the model, the training
dataset is used. After that, all the models were tested with
the validation dataset to ensure the models were performing
as expected. After the validation step, predictions were made
using both machine learning and statistical models. In order
to establish a valid comparison between all the models, MAE
(Mean Absolute Error) is calculated for all predictions. A
detailed flow diagram illustrating the methodology containing
every major section is given in Fig. 1.

Fig. 1. Detailed flow diagram illustrating the methodology

A. Data Source

The dataset has electrical generation, consumption, pricing,
and weather data collected in the period of 4 years for Spain. A
public portal for Transmission Service Operator (TSO) is used
to retrieve the consumption and generation data. The dataset
is unique in that it includes hourly data for electrical usage as
well as the TSO’s forecasts for consumption and pricing. This

allows future predictions to be compared to existing state-of-
the-art forecasts in use in the industry [13].

B. Data Exploration

Before building any neural network model, the dataset needs
to be explored in several ways to gather insight about the data
so that it can be used properly to optimize the output. In the
energy dataset, there are 29 columns in total. They consist of
generated energy of different sources and load power demand.

To ensure better forecasting, only the columns containing
useful information (Total load forecast and Total load actual)
were extracted from the entire energy dataset. The Table I
contains the useful information about those specific columns
in brief. In actual load data there are 35k data points in total,
where 36 missing values, mean is 28.7k, standard deviation is
4.57k, minimum value 18k and maximum value 41k. From the
represented data in the table, it is evident that the default load
forecasting method used in the industry is almost on point.
Before passing the data into the model the missing values are
dropped to avoid any miscalculation.

TABLE I
TOTAL LOAD FORECAST AND TOTAL LOAD ACTUAL DATASET CONTAINING

USEFUL INFORMATION

Feature Total load forecast Total load actual
Valid 35.1k 35.0k

Mismatched 0 0
Missing 0 36
Mean 28.7k 28.7k

Standard Deviation 4.59k 4.57k
Quantities (Min) 18.1k 18k
Quantities (Max) 41.4k 41k

In the dataset, hourly electrical data can be found and the
data has been explored in the hope of finding useful correlation
among various variables. From the Fig. 2 the actual hourly
load data can be considered as time series data.

Fig. 2. The figure representing actual total load in MWh collected in every
hour for one week



C. Correlation

In time series analysis and forecasting, autocorrelation and
partial autocorrelation plots are commonly used. These are
graphs that demonstrate the strength of a relationship between
an observation in a time series and previous observations.

In Table II the correlation between the total load actual and
the rest of the major features has been presented. All major
features give positive correlation thus make them viable for
predicting the load demand. The forecasted load value gives
a positive correlation of 0.99 thus indicating that the selected
parameters are suitable for the forecast.

TABLE II
CORRELATIONS BETWEEN THE TOTAL LOAD ACTUAL AND THE REST OF

THE MAJOR FEATURES

Feature Correlation Coefficient
total load forecast 0.9951

generation fossil gas 0.5489
generation fossil oil 0.4971

generation hydro water reservoir 0.4795
price day ahead 0.4739

price actual 0.4361
forecast solar day ahead 0.4044

generation fossil hard coal 0.3966
generation solar 0.3962

generation fossil brown coal/lignite 0.2805
generation other renewable 0.1817

generation other 0.1007
generation nuclear 0.0857
generation biomass 0.0833

generation waste 0.0773
generation wind onshore 0.0401

forecast wind onshore day ahead 0.0376

The Pearson correlation coefficient is measured in statistics
by a linear correlation between the two data sets. The co-
variance of two variables divided by the standard variables.
Therefore the results always have a value between −1 and
1 are essentially a standard covariance measurement. The
measure can only mirror a linear correlation of variables and
ignore many others like covariance itself. While not much of
the matrix can be achieved, many of the features are highly
interrelated.

D. Data Preprocessing and Windowing

Data preprocessing is the process by which missing (null)
values are cleaned, normalized, filled out. 36 missing values
were found in the used dataset. In the preprocessing step, the
value of look-back was kept 25. The data was restructured
to make it compatible for input into the LSTM model. Each
input data was a list of 25 hours of power consumption
and the output data for that particular input was the power
consumption for the next hour. The dataset was split into train
and test set where 80% of the total data was used for model
training and the remaining 20% was used for testing.

E. Model Description

In this research work, a model based on LSTM architecture
is proposed and the suitability of the model is validated by

Fig. 3. LSTM general architecture showing common components and their
connectivity in the model [14]

comparing with other models such as AR, MA, ARMA and
ARIMA. Firstly, the AR model anticipates future conduct
based on past conduct. The process essentially involves a
linear regression of the current series data against one or
more preceding values of the same series. Secondly, MA
is a simple technical analysis tool, which allows price data
to be smooth by constantly updating the average price. The
average time frame may be 10 days, 20 days, 30 weeks or
any other time frame. In this case, an average of 24 hours of
moving average is taken since it is also appropriate for LSTM.
Thirdly, An ARMA, or autoregressive moved average, is used
to describe two polynomials as weakly stationary stochastic
times. The first is for self-regression and the second for the
moving average. Fourthly, ARIMA describes a given time
series on the basis former values of its own, i.e. its own
deficits and lagged prediction errors to predict future values.
The statsmodel library is used to import the models that are
solely statistics based.

Finally, the LSTM is a modified recurrent neural network
(RNN) with a chain like structure that is suitable for predic-
tions where long-term dependency is an issue [14]. The single
tanh layer is substituted by a quad tanh layer as repeating
module as shown in Fig. 3. Application of the model starts
with identification of irrelevant data and subsequent removal
of it. The sigmoid gate is used to carry out this operation.
The inputs are the preceding (ht-1) input in t–1 (hidden), the
current (Xt) input in t, and bias in bf [15]. Two steps are taken
to update the cell status based on the previous input Xt. This
is the gate of the sigmoid function and the tanh. The sigmoid
gate calculates old update information. The gate of Tanh scales
the cell state of the new candidate value requirement. The
resulting cell state is multiplied followed by addition to the
old cell state to generate the current state of cell Ct. Where
cells are represented at time t-1 and t with Ct-1 and Ct,
whereas b and W are respectively biases followed by cell-



style matrices. Finally, output values (ht) are calculated from
the output cell state (Ct). The second step has similarity, but
now there are updated information forming a new LSTM unit
in the cell state. The output gate’s bias and weight patterns
are represented by bo and Wo.

In Table III, the necessary parameters in the LSTM model
is presented. The model uses sequential from tensorflow, the
loss function is ’mean squared error’ and the optimizer used
is ’adam’. The number of epochs while training is 50 and the
batch size is 70. The number of parameters shown in the table
are all trainable parameters.

TABLE III
LSTM MODEL SHOWING TYPES OF LAYERS, SHAPES OF OUTPUT AND

PARAMETER NUMBERS

Types of layers Shapes of Output Parameter Numbers
LSTM (None, 100) 50400

Dropout (None, 100) 0
Dense (None, 1) 101

In Fig. 4, the model architecture has been presented with
its hidden layers and shape of the inputs and outputs for each
layers. It is comprehensible that even though we used neural
net for forecasting time series data the model complexity is
very low because of its usage of less hidden layers and fairly
straightforward architectural build.

Fig. 4. Plot of the model using keras.utils showing all the parameters and
direction of flow

The Loss vs Epoch curve is shown in the Fig. 5 in which
the progress of model while training is represented. Both
training and testing loss decreases in a smooth fashion fairly
quickly. This essentially means that the LSTM RNN model is
optimized for the dataset that has been used in training and
more computationally expensive models are not necessary in
this case.

The hardware spec in which the training and evaluation has
been done is shown below:

• GPU: 1xTesla K80 , compute 3.7, having 2496 CUDA
cores, 12GB GDDR5 VRAM

• CPU: 1xsingle core hyper threaded Xeon Processors
@2.3Ghz i.e (1 core, 2 threads)

• RAM: 12.6 GB Available
• Disk: 33 GB Available

Fig. 5. Loss curve of the model training showing the loss vs epoch for 50
epochs

III. PERFORMANCE ANALYSIS

Several statistical models for example, Autoregressive Mov-
ing Average (ARMA), AutoRegressive (AR) and recurrent
neural network model namely LSTM has been applied to the
dataset. The actual and predicted outputs of all the above
mentioned models have been shown in Fig. 6.

Fig. 6. Visualizing prediction of different models

Mean absolute errors (MAE) are error measurements be-
tween pairing observations that show the same phenomenon.



It is often used for the assessment of predictive model
performance. For example, Y vs. X comprise comparisons
of predicted versus observed, time vs. time, and a single
measurement technique versus an alternative measurement
technique, shown in Table IV. MAE calculation is as such:

MAE =

∑n
i=1 |yi − xi|

n
(1)

Where xi = true value, yi = prediction value and n = no of
total data points.

TABLE IV
ERROR RATE COMPARISON OF DIFFERENT MODELS CONTAINING MEAN

ABSOLUTE ERROR AND MEAN ABSOLUTE PERCENTILE ERROR

Model Name MAE (MWh) MAPE
LSTM 361.406 1.22

AR 3729.264 13.33
MA 34497.7 59.13

ARMA 3862.929 13.81
ARIMA 3865.296 35.88

From the prediction output in Fig. 6 and the Mean Absolute
Error values from Table IV, it is obvious that the LSTM model
perform much better in forecasting power demand than the
other models. The non-stationary nature of the data is the
reason that the neural net models provide better result than
statistical models. Furthermore, the Mean Absolute Percentage
Error (MAPE) shows favorable results in case of LSTM,
resulting in highly accurate forecasting result compared to
other methods.

IV. CONCLUSION

This paper shows that power demand forecasting using
LSTM has higher accuracy and lower error rate than traditional
statistics based forecasting models such as AR, ARMA and
ARIMA. So, application of LSTM with further hypertuned pa-
rameters and optimizations can be an effective tool for power
demand forecasting and yield better results. Also, the high
prediction accuracy could also be an indicator that other RNN
based models such as Gated Recurrent Unit might also be
suitable as much as or even more than LSTM. The efficiency
of this model will depend heavily on the availability of the long
term past data. So, further research into effectiveness of RNNs
in demand forecasting could demonstrate higher accuracy.
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